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Abstract

In this work, Model Predictive Control (MPC) is experimentally implemented on a Heating, Ventilation
and Air Conditioning (HVAC) system of a large-scale office space. As controller model, a physics-based
Modelica building model is calibrated based on historic data pursuing an iterative, nonlinear optimization
approach. For the calibration period with a horizon of seven weeks, the calibrated model exhibits a high
model accuracy with a Root Mean Square Error (RMSE) of 0.49 K between the measured and estimated
room temperature. The MPC toolchain includes modules for state estimation and forecasts of disturbances
quantities (such as outdoor temperature, solar radiation including calculation of the direct and diffuse
fraction, supply temperatures and occupancy). The MPC execution comprises the operation of heating
based on radiators and floor heating (via regulation of valve openings) as well as shading of three Venetian
blind systems (via regulation of vertical position and slat inclination angle). The experiment is conducted
during a heating period with a duration of three weeks from October 21 to November 11, 2022. The
heating actuators are controlled considering their typical dynamics and take into account the night setback
during unoccupied office periods. User acceptance of the automated shading control is included through
an additional cost function terms for the shading operation. The field test reveals the predictive control
capabilities of the proposed MPC toolchain in a real-life scenario, demonstrating energy-efficient building
operation and total average discomfort of 0.53 Kh/d. The MPC formulation provides flexibility regarding
tunability of the control towards energy efficiency, thermal comfort, daylight transmission and non-oscillating
shading control. Finally, the disturbance forecast accuracies for outdoor temperature and the solar radiation
quantities are evaluated and the MPC control performance is compared against a conventional control
approach.
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DWD Deutscher Wetterdienst

ETS Engineering-Tool-Software

FMI Functional Mockup Interface

ghi global horizontal irradiance

HVAC Heating, Ventilation and Air Conditioning
illum illuminance

MAE Mean Average Error

MOSMIX Model Output Statistics-MIX

MPC Model Predictive Control

MQTT Message Queuing Telemetry Transport
PID Proportional-Integrative-Differential
RBC Rule-Based Control

RMSE Root Mean Square Error

TABS Thermally Activated Building Systems
UKF Unscented Kalman Filter

Subscripts

al artificial lighting

dl daylight

floorHeat floor heating

inclAng inclination angle

Light lighting

max maximum

min minimum

posShad shading position

rad radiator

set set-point

1. Introduction

Approximately 30 % of the global energy demand and 27 % of the global CO4 emissions are attributed
to the building sector (excluding the building construction industry) [I]. Heating, Ventilation and Air
Conditioning (HVAC) systems provide comfort to building users and contribute to a major extent to the
energy consumption in buildings [2]. Thus, energy-efficient control of these systems offers a large potential
for the increase in building energy efficiency and reduction of global energy demand. Compared to other
measurements to increase the energy efficiency of buildings such as improvements of the building envelope,
refurbishments or replacements, the optimization of the control of HVAC systems is a cost-effective and
practicable approach.

The control of HVAC systems poses various challenges due to nonlinear dynamics with time delays,
conflicting optimization goals (e.g., the simultaneous minimization of energy consumption and discomfort)
as well as system dynamics, setpoints and disturbances that vary with time [3]. As people in industrialized
countries spend on average 90 % of their time in buildings, there are high demands on comfort (e.g., thermal,
indoor air quality and visual), which has an impact on occupant productivity, satisfaction and health [4].

Conventional control strategies for buildings are Rule-Based Control (RBC) or Proportional-Integrative-
Differential (PID) controllers as they represent easy-to-implement controllers with low computational re-
quirements [5]. They need to be tuned for specific operating ranges, perform badly outside the tuning
conditions, are not able to integrate system and comfort constraints or future disturbances, to operate
time-varying system dynamics or time delay and to deal with conflicting optimization goals.



Model Predictive Control (MPC) is an advanced control technique, which has attracted attention in the
building control domain and suggests various benefits compared with conventional controllers addressing
the aforementioned challenges. MPC builds upon a model of the building energy systems to predict future
system behavior and calculate control inputs in an anticipatory manner. It is able to integrate system and
comfort constraints as well as forecasted disturbances, control buildings with time-varying dynamics and
time delay as well as minimize multi-objective cost functions over a prediction horizon. Beneficial buildings
characteristics for the application of MPC are high thermal mass, thermal storage, wide comfort ranges,
predictable heat gains and inert HVAC systems with time delay [0l [7].

1.1. Background

MPC has demonstrated its functionality and benefits of energy savings and simultaneous preservation
or even improvement of thermal comfort in a wide range of simulative case studies and beyond that, in
some field demonstrations. Cigler et al. [8] applied MPC to the control of a ceiling radiant heating and
cooling system in an office building in Prague achieving energy savings of 15 to 28 % compared to the
conventional heating curve based control. Applying MPC to the operation of a large cooling system in a
university building in Merced, California, Ma et al. [9] obtain an increase of 19 % in efficiency in terms of a
coeflicient of performance compared to a reference control. The practical implementation of building MPC
demonstrated energy savings of more than 20 % controlling a ventilation system in a research laboratory in
Ilinois [10], 17 % in an office building in Belgium operating Thermally Activated Building Systems (TABS)
[11], 19 % in two office buildings in Australia controlling Air Handling Units (AHUs) [12] and more than
20 % of primary energy reduction for an office building in Brussels operating heat pumps and gas boiler [13].
These figures coincide with thermal energy savings of 16 % in comparison with an identically configured cell
controlling a radiant slab system in a building test facility in Berkeley, California, [14], energy savings of 15
to 20 % in a laboratory in Bari, Italy, controlling fan coil units [I5] and electrical energy savings of 15 to
21 % in a test facility in Singapore with two identical experimental cells controlling mechanical ventilation,
shading and lighting [16]. Higher energy savings were obtained by Drgona et al. [I7] with more than 50 %
employing MPC for the operation of a heat pump, floor heating and TABS in an office building in Belgium,
by Freund and Schmitz [I§] with energy savings of 30 % implementing MPC for TABS supply temperature
control in a large-scale office building in Hamburg, Germany, by Blum et al. [I9] with energy savings of 40 %
executing MPC on an HVAC system of an office building in Berkeley, California, and by Merema et al. [20]
with up to 55 % of heating energy savings applying MPC to a ventilation system of an educational building
in Ghent, Belgium.

When implementing MPC in building energy systems, the modeling part plays a crucial role for the
success of MPC, as it consumes most of the project time and costs [8, [2I]. This is attributable to the unique
characteristics of every building requiring an individual, tailored modeling for every MPC implementation.
Thus, a user-friendly, accurate and fast generation of suitable MPC models is essential for the widespread
applicability of MPC in building control, also on a commercial scale.

The modeling language Modelica [22] fulfills these requirements and suits the tailored building modeling
due to its flexible and modular structure. It is an open-source, equation-based and object-oriented modeling
language, which allows the collection of modular, reusable models in libraries. The generation of open-
source building simulation libraries in Modelica is advanced by international projects such as the IEA EBC
Annex 60 project, which resulted in the Modelica IBPSA library [23]. This base library has been extended
by several research groups into individual libraries, which are still actively developed and maintained and
contain an extensive range of models for buildings and HVAC systems [24], 25] [20] [27]. Reusing component
models of these shared, open-source libraries enables modular, high-accuracy modeling and avoids repetitive
modeling efforts. The user-friendliness of Modelica is further increased, as it is equipped with a graphical
user interface to connect components. Modelica supports the Functional Mockup Interface (FMI) standard,
which allows for model exchange and co-simulation with other modeling and simulation tools. The language
extension Optimica [28] enables the formulation of optimization problems by adding constraints, variable
bounds and objective functions to the simulation model.

To suit the use in a building MPC, on the one hand, a model has to be simple and computationally
efficient enough to be solved in an adequate amount of time, on the other hand, it has to be detailed enough
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to reproduce the dynamics of the building in an accurate manner. Particularly for use in MPC, a model
of high accuracy is crucial as an MPC tends to operate the comfort quantities (e.g., temperature or COq
concentration) near their specified bounds to save energy, where an inaccurate model would risk comfort
violations due to errors in predicting the building dynamics.

Nonlinearities appear in buildings within specific physical heat transfer phenomena in the building en-
velope (e.g., convection, radiation or absorption/transmission of solar gains through windows), in HVAC
systems (e.g., heat pumps, fans, pumps, valves and in general, hydraulic relationships between pressure dif-
ference and mass flow rate) and corresponding performance curves and tables. Especially for the nonlinear
dynamics in HVAC systems, nonlinear physics-based controller models are more accurate over a wide range
of operating conditions compared with models that are linearized around a nominal operating point. Nonlin-
ear MPC enables higher flexibility in formulating the optimization problem consisting of system dynamics,
constraints and cost function and unlocks an exploitable MPC potential (i.e., in the form of energy or cost
savings) closer to the theoretical performance bound [29]. In linear MPC, which is the most commonly
applied building MPC form [30], usually, only intermediate quantities (e.g., heating or cooling energy flows)
or high-level set-points are calculated by the optimization minimizing an approximation of the nonlinear cost
function, whereas the conversion into the building actuator control signals is assigned to a post-processing
or suboptimal low-level controller (e.g., PID or RBC). By applying nonlinear MPC, the optimization is
executed with respect to the control inputs that are actually implemented in actuators and efforts for pre-
and post-processing, variable mapping and linearization are reduced. The increased model accuracy comes
at the expense of higher optimization complexity and computational demand; however, optimization algo-
rithms and solvers are continuously improving and due to advancements of processors and cloud computing
the available computational power, is increasing exponentially [5].

1.2. Contribution

In this work, a practical toolchain for nonlinear, Modelica-based MPC is demonstrated in a field test on
an HVAC system of an office space. The work contributes to bridging the gap between the high number of
simulative MPC implementations and the scarce cases of practical realizations of building MPC. The model
generation pursues a physics-based modeling approach mapping each physical component to a model equiva-
lent based on a building simulation library and documentation of the building envelope and HVAC systems.
The modeling approach preserves interpretability of the physically meaningful model parameters/states and
optimization results alleviating spatial location, comprehension of system behavior and fault detection. For
refining the model, an iterative, nonlinear parameter estimation calibrates selected parameters of the Mod-
elica model. The MPC toolchain contains modules for forecasting disturbance quantities (occupancy and
weather including solar radiation quantities) and state estimation. In the field test, both heating (via ma-
nipulation of the valve openings of floor heating and radiators) and shading (via manipulation of the angle
and position of Venetian blinds) are operated over a period of 21 days.

The paper is structured as followed as follows: In Section [2] the test bed for applying the MPC toolchain
is described. Section [3] presents the implemented toolchain, including modules for forecasting, state and
parameter estimation as well as communication with sensors, actuators and databases. In Section [4] the
MPC formulation for the experimental case study is specified. Section ] presents the results of the parameter
estimation, MPC execution, evaluation of the disturbance forecast accuracy and a reference application
of a conventional control approach. Finally, Section [6] summarizes the results and gives an outlook on
improvements and ongoing development of the toolchain.

2. Case study building

The developed MPC toolchain is demonstrated under real-life conditions and applied to a room of the
student laboratory JuLab on the campus of the Forschungszentrum Jiilich. The controlled room is also
known as ”Glasernes Labor” (”glass laboratory”, front room on the ground floor in Figure . It has three
extensive window facades, a floor area of approximately 120 m? and is dedicated to laboratory exercises for
visiting pupils. The room is equipped with facade-individual Venetian blinds, two radiators and floor heating
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and thus, integrates both a heating system with fast and slow dynamics. The radiators and floor heating
are equipped with electromechanical control valves, which allow for setting the valve openings directly. The
three window facades are oriented in the south-east (SE), south-west (SW) and north-west (NW) direction.
A sketch of the room structure and its orientation is given in Figure 2] The room has six small windows
in the form of manually openable skylights (visible in Figure |1| above the doors and in Figure [2| on the
window facades). To accurately monitor occupancy, a person counter is installed, which detects the current
number of occupants in the room. Further measuring equipment in the form of a proprietary system
monitors building-wide heating energy consumption, heating water volume flows and supply and return
water temperatures. Heating consumption measurements are available for the radiator heating circuit and
the floor heating circuit separately.

Several sensors are installed in the room, e.g., for temperature, COs, illuminance as well as window
and door opening states. The room temperature sensor is mounted at the internal wall of the room (see
localization in Figure [2) and measures at intervals of 0.1 °C. Most of the actuators and sensors employ the
building automation standard KNX. Several devices (e.g., the sensors for door and window opening states
and the radiators) use the wireless EnOcean technology, but they are fully integrated with the KNX bus
via an EnOcean-KNX gateway and addressed via the KNX system. A further KNX-IP gateway ensures the

communication the cloud.

Schdilerlabor

JUL

Figure 1: JuLab building at Forschungszentrum Jiilich

3. Methodology

Figure [3] gives an overview of the toolchain that forms the basis for the practical implementation of the
MPC. The dashed box comprises the modules that are executed online during the real-time execution of the
MPC, namely, the forecasting of the disturbance quantities weather and occupancy, the state estimation and
the real-time communication of the actuator control inputs (i.e., MPC outputs) and measurements via the
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Figure 2: Setup of controlled room

network protocol Message Queuing Telemetry Transport (MQTT). The components outside the box serve
the purpose of offline calibrating/updating selected parameters of the building model within a parameter
estimation based on measurement data retrieved from a database. To this end, historic measurements of
both control inputs and sensor values are stored in a database. The implemented toolchain builds upon
JModelica.org [28] (using linear HSL solver ma27 [31I]), which is a software framework for gradient-based
optimization of Modelica models and is equipped with an interface to IPOPT 3.13.1 [32] for nonlinear
optimization. In previous works, the MPC framework has been extended by a distributed MPC approach
[33] for control of large-scale buildings, a hierarchical MPC [34] for splitting the control complexity in the
temporal dimension and a hybrid MPC [35] for the integration of integer decision variables while taking into
account nonlinearities. With regard to the interfaced database, access to the Outlook room booking and
the MQTT communication with sensors and actuators, this chapter builds upon the work by Redder et al.
[36] and Althaus et al. [37]. For a more detailed technical description of these implementations, the reader
is referred to these publications. In the following, the different modules of the toolchain are described.

Forecasting

In the forecasting module, the different disturbance quantities that have an impact on the room behavior
are forecasted. For the weather quantities, weather forecast data provided by the Deutscher Wetterdienst
(DWD) are used. The retrieved weather forecast is a statistically optimized Model Output Statistics-MIX
(MOSMIX) forecast for the location of Jiilich and is updated every hour. The forecasted weather quantities
comprise ambient temperature, surface pressure, dew point temperature, wind direction and speed, different
forms of cloud cover and global horizontal irradiance.

Based on the Python package pulib [38] and several additional solar models presented by Dervishi and
Mahdavi [39], the forecasted global horizontal irradiance is split into a diffuse and direct fraction. For this
purpose, the pulib provides several models such as the DISC [40] and Erbs model [4I]. These models estimate
either the direct or the diffuse fraction of the global horizontal irradiance based on empirical relationships
using the clearness index (ratio of the global to the extraterrestrial horizontal irradiance) and additional
weather quantities such as solar altitude, air temperature and relative humidity. From the models presented
by Dervishi and Mahdavi [39], the models proposed by Reindl et al. [42] and Orgill and Hollands [43]
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Figure 3: Overview of the toolchain for the practical MPC implementation

are implemented. For the nearest weather station within the Python package wetterdienst that provides
measured global and diffuse horizontal irradiance (Aachen-Orsbach, approximately 25 km distance from
Jiilich), the capabilities of the implemented solar models to predict the diffuse horizontal irradiance are
evaluated by comparing the predicted with the measured values (evaluation period from September 1 to
November 1, 2022). Based on the evaluation results, the DIRINT modification of the DISC model [44] (based
on additional dew point temperature information; version provided by the povlib) with the lowest Root Mean
Square Error (RMSE) of 27.4 W/m? (shown in Figure [4)) is chosen for predicting the direct/diffuse solar
fractions of the forecasted global horizontal irradiance. The calculated direct and diffuse solar fractions are
then used to forecast the direct normal and diffuse horizontal irradiance. For the shading operation and
the MPC control performance, the accuracy of the irradiance forecasts is of high relevance due to its large
window facades.

Based on the ambient temperature forecast provided by the DWD, the heating water supply temperatures
for the floor heating and radiators are forecasted, which are controlled by the building automation system
based on heating curves depending on the ambient temperature. Based on historic data from the CrateDB
database, a relation between the ambient temperature and the corresponding supply temperature of the
floor heating or radiators is calculated in the form of a linear regression model, which is then used in the
forecasting module for the prediction of future supply temperatures.

The future number of occupants in the room is forecasted based on a historic look-up table. Access to
the Outlook room booking system provides information about past and future meetings including start, end
time and meeting subject. Coupled with historic measurements of the person counter, a look-up table is
created, which assigns meeting subjects to the average counted number of occupants. Based on the created
look-up table, future meeting subjects are mapped to their average historic occupancy. Since the room is
equipped with a person counter and the current number of occupants may deviate from its historic average,
a correction is applied, which adjusts the occupancy forecast for the next sampling period based on the
current measurement. During the MPC execution, all forecasts (weather and occupancy) are updated at
intervals of a prespecified number of eight MPC iterations (equivalent to 2 h).

Historic measurements

Historic data of the control inputs and sensor measurements are stored in a CrateDB database. For all
control inputs, the set-point that is determined by the MPC and communicated to the actuators is logged.
For some control inputs (e.g., the valve openings of the radiator and floor heating as well as the shading
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Figure 4: DIRINT modification of the DISC model for the calculation of the direct fraction of the global horizontal irradiance
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control inputs), the feedback of the realized value is stored as well, which enables verification that the sent
control inputs are implemented correctly and provides information about the time delay. For accessing the
CrateDB, the Python package crateDB is used. Based on information from the Engineering-Tool-Software
(ETS) of the building, which is the software for configuration and parameterization of the KNX building
system, KNX group addresses and corresponding descriptions (e.g., sending a set-point for the shading
position or getting the current illuminance measurement) are mapped to device IDs. Based on the device
IDs and the respective descriptions, a mapping is created between the Modelica model variables and the
corresponding device IDs. Since the data are stored at irregular time intervals and mainly in an event-based
manner, for use of the data in a parameter estimation, a resampling method is necessary, which resamples
the data, e.g., at 15-minute intervals. The resampling is implemented according to the corresponding data
type of the device ID, e.g., being a float or integer. Both for the control inputs and integer type data,
a forward-fill approach is conducted to resample the time-series data. For the remaining data types, the
time-series data are interpolated during resampling.

For the parameter estimation, weather measurements for the site of Jiilich are required. The roof-
mounted weather station of the building just provides measurements for ambient temperature, wind speed
and external illuminance. The latter is measured by illuminance sensors that are oriented in the directions of
the window facades (south-east, south-west and north-east). Based on the different illuminance sensor mea-
surements and local global horizontal irradiance measurements, which are available for the period exhibited
in Figure o a linear regression model is built. It calculates the global horizontal irradiance as a function of
the three illuminance measurements. The approximation performance of the regression is shown in Figure [f]
resulting in a Mean Average Error (MAE) of 43.2 W/m? and an RMSE of 86.6 W/m?. It is assumed that
the regression model is also representative of other periods and reproduces the global horizontal irradiance
with a reasonable accuracy.
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Real-time communication via MQTT

The MQTT protocol transfers MPC outputs (the control inputs to be implemented by the actuators)
and the real-time sensor measurements from/to the cloud, where the MPC is executed. For this purpose, the
Python package paho-mgtt is employed. The package enables communications via a coupled MQTT broker
to publish messages (the control inputs, in this context referred to as commands) and to subscribe to topics
(the sensor measurements, in this context referred to as attributes) and published messages. All data that
are communicated via MQTT are stored in the CrateDB database. Before the start of the MPC execution,
a subscription is undertaken for all room-relevant measurements and control inputs. The subscribed topics
are formulated based on the mapped device IDs from the ETS described in the previous section. The
same applies to the published topics, which contain the control inputs sent to the respective actuators and
are based on mapping the Modelica variables onto the corresponding device IDs including a potential unit
conversion.

State estimation

To initialize the optimization state variables based on the most recent measurements, state estimation
is run before every MPC iteration. It enables to estimate the current value of non-measurable states such
as the temperatures of walls or the fluid and solid components of the radiators and floor heating. Apart
from this, state estimation can compensate for potential modeling or measurement errors. In this work,
state estimation in the form of an Unscented Kalman Filter (UKF) based on ukf.py from the JModelica.org
toolchain is applied. Its implementation is based on the work by Sun et al. [45] (non-augmented version
described in this work) and Wan and Van Der Merwe [46]. A UKF is chosen due to its low computational
requirements and real-time capabilities for estimating nonlinear systems. Input to the UKF estimator is the
most recent room temperature measurement based on which all Modelica model states are calculated, which
are used then to initialize the optimization problem of the next MPC iteration. The UKF performance
can be adjusted by specifying process and measurement noise and, as a result, strengthen the confidence in
either the measurements or the Modelica model.

Parameter estimation

For creating the MPC controller model, the first version of the office space model is created based on
information derived from construction plans and available specifications of actuators and building envelope.
The modeled room components comprise two radiators, the floor heating, the air volume, two pumps (one
for the radiators and the floor heating each), three valves, three windows including Venetian blinds (based on
the created model in [34]), an external and an internal adiabatic wall as well as occupancy. To calibrate the
physics-based Modelica room model, an iterative, nonlinear parameter estimation is implemented based on
greyboz.py of the JModelica.org toolchain, Optimica [28] and IPOPT to estimate selected model parameters.
The basic greybozr.py submodule has been extended by a simulative sensitivity analysis determining the
order of estimating the parameters and a division of the calibration horizon into periods focusing on specific
physical phenomena. The input data for the parameter estimation are retrieved from the CrateDB and
comprise measurements for the room temperature, heating and shading control inputs, weather-related data
(from the building weather station), counted number of persons and heating water supply temperatures for
the radiators and floor heating. In addition, a unit conversion from the KNX units towards the equivalent
units in the Modelica model is performed.

The parameter estimation problem is solved over a user-defined time horizon minimizing the quadratic
deviation between the measured and predicted room temperature (with ¢y and ¢; as the start and final time
of the prediction horizon):
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Here, Ymeasurea corresponds to the measured, Yoptimized t0 the optimized room temperature and p rep-
resents the vector of free parameters with size n. For every parameter to be calibrated, minimum and
maximum bounds (Equation ) as well as an initial guess can be specified. Equation describes the
general nonlinear system DAEs.

The parameters that are selected by the user to be calibrated are iteratively estimated in an order
established by a preceding simulative sensitivity analysis, which calculates the influence of the selected
parameters on the room temperature dynamics. The most influential parameter is estimated first, while the
remaining selected parameters are fixed to their initial guess. After the optimization, the cost function result
is evaluated to analyze if the calibrated parameter can reduce the cost function compared to the previous
parameter selection. If this applies, the parameter is kept in the total parameter set of free parameters
that are estimated in the next iteration, otherwise, it is removed and fixed to its initial guess to reduce the
degrees of freedom in the optimization problem. The procedure is repeated with the next most influential
parameter, which is added to the total parameter set, and the estimation problem is solved again. The
parameter estimation ends if all user-specified parameters have been evaluated. Currently, the parameter
estimation is implemented in an offline configuration detached from the MPC, but it could be adapted to be
run at regular intervals within an online MPC execution resulting in a continuously updated MPC model.

Initial model
Y
Calibration period: Calibration period: Calibration period:
without shading, | Building —»{ with shading, without ——Shading—»; .
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Figure 6: Iterative calibration process for estimating model parameters

To reduce the number of influencing factors that impact the measured room temperature during an
estimation period and to be able to trace back dynamics in the measured temperature trajectory to a specific
room component or physical phenomenon, different calibration periods are employed. In each calibration
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period, the focus is set on a specific isolated influential factor (e.g., the building envelope, shading or
heating systems) and the impact of other components is tried to be reduced. The sequence of the different
calibration periods for the controlled office space is visualized in Figure[6] The boxes represent the individual
calibration periods including focused and neglected influential factors and the outputs of the boxes constitute
the components whose parameters have been calibrated. In the first period, the parameters of the building
envelope are calibrated by focusing on periods without shading, occupancy and heating. The estimated
parameters for the building envelope are set to fixed in the next calibration period, where the focus is set
on the influence of the shading. This procedure continues for calibrating the parameters of the occupancy
influence and finally, the isolated heating actuators in periods, where just one of the heating actuators is
operated. In the final calibration, the building is exposed to all influential factors and disturbances validating
the overall performance of the updated model to track the room temperature measurements. The respective
calibration periods isolating specific physical phenomena or components are currently manually extracted
from the total data set but could be automatically extracted based on a data filtering script in the future.

4. MPC formulation

In the conventional control mode, both for the radiators and the floor heating, a local PI-controller in the
building regulates the respective valve openings based on the current room temperature and a temperature
set-point provided by the occupant via an on-site room control panel. When applying the MPC mode,
two different heating control modes are available. In the first MPC heating control mode, temperature
set-points calculated by the MPC are sent to the local controllers and implemented by them. In the second
control mode, which is pursued in the experimental MPC of this work, the controllers are deactivated by a
blocking signal, and the valve openings are set directly by the MPC. The sent radiator valve opening applies
to both radiators. When returning into the conventional control mode, the controllers are activated again.
The communication with the two radiators is carried out via the wireless EnOcean protocol. The EnOcean
actuators are configured to wake up every 10 minutes, receive the most recent control input and implement
it. The other actuators are addressed via KNX.

The blinds on each facade can be individually controlled via the vertical shading position and the
inclination angle as depicted in Figure A wind sensor of the building weather station monitors wind
speed and in case of exceeding a threshold of 10 m/s, all blinds are raised.
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Figure 7: Venetian blinds (uinciang: inclination angle; uposshaq: shading position)



The optimization problem to be solved in every MPC iteration is formulated as follows (with ¢y and ¢
as the start and final time of the MPC prediction horizon):

ty
uradﬂ%i{}rHeat: J :/t (arad * Mrad (t) ' (Tsupply,rad(t) - Treturn,rad (t))
UposShad,1,UinclAng,1 0

UposShad,2,UinclAng,2
UposShad,3;UinclAng,3 s
Ual,€,E

+ QfiporHeat * mﬂoorHeat (t) ( supply,floorHeat (t) - Treturn,ﬂoorHeat (t>)

+ 6 - aLignt - ual(t) + 0+ (£(t)* + &(t))

+ Oposshading - Alposshad (£)? + Tinclang * Alinciang (£)*)dt (2a)
s.t. F(t,dx,z,u,w,p) =0 (2b)
x(tg) = 2o (2c)
T room.air(t) = €(t) < Troom,air (t) < Troom,air(t) + &(t) (2d)
e(t),e(t) = 0 (2e)
illumay (t) + illuma (t) > illumse (t) (2f)
Urad,min < Urad < Urad,max (2g)
UfloorHeat,min < UfloorHeat < UfloorHeat,max (2h)
UposShad,min < UposShad,i < UposShad,max Vi € {1,2,3} (2i)
UinclAng,min < UinclAng,i < UinclAng,max V¢ € {1,2,3} (2)

In these formulations, uyaq and UgeorHeat correspond to the valve openings of the radiators and floor
heating (in %). UposShad,i and Uinciang,i with ¢ € {1,2,3} are the vertical shading position and inclination
angle of the respective window facade. i=1 corresponds to the south-east, i=2 to the south-west and i=3
to the north-west facade. £ and € are introduced slack variables softening the thermal comfort constraint
(Equations and ) Uy is the theoretical control input for artificial lighting, which is assumed to
vary linearly with the generated artificial illuminance illum,;, which is calculated based on the calculated
illumg from the model. a;aq and agoorHeas are energy weighting factors for the radiators and floor heating
consisting of the heat capacity of water, arignt is a weighting factor for the energy consumption of artificial
lighting and 6 a factor penalizing room temperatures outside the comfort range. 7,,q and MmacorHeat are
the total heating water mass flows supplied to the radiators and floor heating. T'yop air a0d Troom,air are
the time-variant lower and upper comfort temperature bounds. Tyupply,rad; Tretummd7 Tsupply,floorHeat and
Treturn,foorHeat are the supply and return water temperatures of the radiators and floor heating. illumq is
the daylight illuminance transmitted by windows and Venetian blinds, illum,; the artificial light illuminance
and illumge; the time-variant minimum comfort illuminance. Equation describes the general nonlinear
DAEs. Equations to represent the minimum and maximum bounds for the control inputs with
UposShad,i € [0, 1] (0: fully opened, 1: closed) and inciangi € [0°, 90°] (0°: fully opened, 90°: closed).

The first two terms of the cost function (Equation ) represent the heating power consumption of
the radiators and the floor heating. The third term contains the electrical power consumption for the
artificial lighting extended by the factor § to optionally put more weight on the transmission of daylight
into the room. The fourth term corresponds to the thermal discomfort in the form of the quadratically
penalized slack variables ¢ and £ and the two last terms penalize the change in the shading control inputs
based on oposShading ad Tinciang to avoid oscillatory, user-disturbing operation. The factors 6, 8, oposShading
and Oinciang could also serve as tuning parameters (in combination with the comfort bounds), which are
adjusted by the occupants over time to maximize user satisfaction with the implemented building control
with regard to energy efficiency, daylight transmission, thermal discomfort and shading frequency according
to Figure[8] In the current version, the weighting factors were specified based on initial guesses and adjusted
after evaluation of first control results.
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Figure 8: Adjustability of the weighting of the cost function terms

Both thermal and visual comfort are considered within the optimization constraints. The bounds for
the room temperature comfort (T,qom air a0 Troom,air) and the minimum illuminance (illumse) are set
according to daytime. From 8 a.m. to 5 p.m. (times of potential occupancy), the minimum and maximum
bounds for the comfort temperature are 21 and 23 °C, outside these times the comfort range is widened
to 19-26 °C, as no specific comfort requirements need to be fulfilled there. With regard to visual comfort,
a minimum illuminance of 500 Lux [47] has to be fulfilled during occupied times (8 a.m.—5 p.m.) by the
combination of natural daylight and artificial illumination. In the current configuration, temperature set-
points entered by the occupants via the room control panel are not considered or integrated into the MPC
as new comfort bounds, which is planned for future versions. In case the occupants manually operate the
shading via the room control panel, the MPC gets feedback (by comparing the control input sent in the
previous MPC iteration and the current feedback) and does not send any shading control input for two
hours. Apart from this, MPC control inputs for the shading that deviate less than 5 % from the previously
sent value are filtered to reduce disturbances to the occupants. The prediction horizon of the MPC is 24 h
and the sampling period is 15 min. The toolchain is run on an OpenStack virtual machine with Ubuntu
18.04, 8 VCPUs and 32 GB RAM.

5. Results

5.1. Parameter estimation

The prediction horizon of the parameter estimation is set to 24 h. The start time of the parameter
estimation is always set to 00:00 (12 a.m.) on each day to facilitate the initialization of the model state
variables. It is assumed that at 00:00 all heating systems have not been activated for a longer period due
to a lower minimum temperature during the night and the corresponding capacitances (the fluid and solid
components of the radiators and floor heating) have converged to an equilibrium temperature, which is
identical to the measured room temperature at this time.

The parameter estimation was carried out with data from September 17 to November 4, 2022. In Figure[J]
the parameter estimation results based on the final parameter set are shown for a calibration period in which
the room temperature is impacted by all potential influential factors (October 26, 2022). On this day, the
building is affected by heating via radiators (second subplot) and floor heating (third subplot), shading
(fourth subplot) and a few occupants (sixth subplot). The ”Irradiance” subplot reveals a high amount of
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direct solar irradiance hitting the window facades of the room. The "Room temperature” subplot shows
a good approximation of the measured room temperature by the estimated one. This applies to both the
optimized (resulting from the optimization solver IPOPT) and the simulated trajectory (FMU simulation
based on the estimated parameters). The impact of the second peak of the direct solar irradiance (around
12:00) on the room temperature is slightly overestimated in the model. The RMSE between the measured
and estimated simulated room temperature trajectory is 0.31 K. It should be noted that the global horizontal
irradiance (as well as the direct and diffuse irradiance) depicted in the last subplot is not completely measured
but calculated based on the external illuminance measurements and the evaluated regression function.

NN
N W

—— measured ~—~ estimated simulated -
estimated optimized 2

Room

radiators temperature
[°C]
N
[

100 JLLL

[%]
w
o

Valve
opening

o

Valve
opening
floor heating
[%]

o

5 1 ] —— SE c .T
2659 SE — SWl905 459
52238+ — NW| G©©2oT
BBog— | — SwW — EcO00L
Gass [ Nw , 2758

[*C]
=N
u o
g

Ambient
temperature

Occupancy
[-]

—
— |
E—
1

o

—— Global horizontal —— Diffuse horizontal
Direct normal

0 | M

w
o
o

Irradiance
[W/m2]

Q Q Q Q Q Q Q Q Q Q Q Q Q
O @ e ©® @Y o a6 @ 0% o o°
16 16 © © o © 16 16 16 10 S 16 7
(o3 (oS oS (o5 v (oS (o33 (o5 (o3 (o3 (o33 (o3 (o3
2 Of 11,0 ,ﬂ,O ’),'VO "EL’O 11,0 ,ﬂ,O ’L’VO ’L’Vo 17_,0 ’17"0 1},0 "L’Vo
7,0 N N 10 N N N 10 N N 190 10 N
Date

Figure 9: Parameter estimation results for an exemplary calibration period with all influences

For the final set of estimated parameters, the RMSE between the measured and estimated simulated room
temperature trajectory averaged over all considered calibration periods from September 17 to November 4,
2022 is 0.49 K. According to Blum et al. [19], an RMSE for approximating the building envelope below 1 K is
an indicator of sufficient model accuracy for use in building MPC. Hence, in this work, a high model accuracy
is achieved by the combination of the Modelica model generation and the refining parameter estimation.

5.2. MPC

The MPC was experimentally applied to the laboratory room for 21 days from October 21 to November
11, 2022. During that period, the MPC was stopped and reinitialized at some points to update the calibrated
room model or adjust parameters in the weather forecast or weighting factors of the cost function. The results
for the entire controlled period retrieved from the database are plotted in Figure[I0]and in a higher temporal
resolution for November 7 to 11 in Figure [T1]
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Figure 10: Experimental MPC on the JuLab from October 21 to November 11, 2022
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Figure 11: Experimental MPC results from November 7 to 11, 2022 (thermal discomfort of 0.64 Kh/d)
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The first subplot depicts the measured room temperature and the specified time-varying minimum and
maximum comfort bounds including the widened comfort range during unoccupied periods (night setback,
from 5 p.m.-8 a.m.). The second, third and fourth subplot show the disturbance quantities that have an
influence on the room dynamics. The ”Occupancy” subplot exhibits little occupancy on some days, whereas,
most of the time, the room is not occupied. The ” Ambient temperature” subplot reveals a warmer first
period (October 21 to November 2) with ambient temperatures near 20 °C followed by colder temperatures
near 10 °C (November 3 to 11). The ”Irradiance” subplot shows the irradiance quantities of the global
horizontal, direct normal and diffuse horizontal irradiance, which are calculated based on the external
illuminance measurements. On October 26, 27, 28 and 30 as well as November 1, 2, 5, 10 and 11, there is
an increased amount of direct irradiance. The ”Illuminance” subplot depicts the indoor room illuminance
measured by the person counter and the minimum comfort illuminance specified in the optimization (to
be fulfilled by the sum of daylight and artificial lighting). In the ”Wind alarm” subplot, the exceedance of
the wind speed threshold is indicated, which causes a wind alarm and raise of all Venetian blinds to avoid
damage. The ”Shading position” subplot depicts the shading feedback for all window facades, both for the
vertical shading position (left y-axis) and the inclination angle (right y-axis). For more detailed information
about the current solar position, the solar azimuth is shown in the ”Solar azimuth” subplot. By the color
of the respective marker, the facade that is mainly irradiated at this time can be derived. The facade colors
correspond to the ones of the shading position in the ”"Shading position” subplot. In the last two subplots,
the manipulated valve openings for the radiators and floor heating are shown. The sent radiator valve
opening applies to both radiators but may be realized by the radiators at different times. Both the written
and measured feedback values are outlined. For the floor heating, these trajectories generally coincide, for
the radiators, there is a slight time delay due to the wireless EnOcean communication and described on/off
behavior (visible in Figure [TT)).

Since the building is solely equipped with building-wide energy consumption meters, a quantified evalu-
ation of the energy efficiency of the MPC approach in comparison to a conventional control is currently not
possible. Nevertheless, the first subplot of Figure [L0] insinuates the energy efficiency of the MPC approach
by showing a heating control, which tries to operate the room temperature near the lower comfort bounds.
The night setback is exploited and, in the case of heating demand, the room is preheated to reach the
minimal comfort bound of 21 °C at 8 a.m. of the next morning, which is the time when the building is
prepared for potential occupants. For most days, the minimum comfort temperature at this time is reached.
On November 4, 7, 9 and 11, the minimum comfort bound is slightly exceeded. From Figure which
compares forecasted and measured disturbance trajectories, it can be observed that during the morning
hours on November 4, 9 and 11, the forecasted ambient temperature is approximately 2 °C higher than the
measured one, which could contribute to explaining the exceedance. On November 3, the heat gains in the
room are overestimated in the MPC to some degree, which leads to small exceedance of the lower comfort
bound during most of the day. It should be noted that thermal comfort is not considered a hard constraint
but softened and penalized in the cost function according to Equation and Equation . This allows
certain discomfort according to the weighting of the cost function terms and the balance between energy
efficiency and discomfort minimization.

Due to its higher inertia, the floor heating is generally activated earlier and operated for longer times
compared to the radiators (visible in Figure . Moreover, the floor heating is controlled in a less dynamic
and oscillating way compared to the radiators. Consequently, the floor heating covers the base load exploiting
the higher energy efficiency due to lower supply temperatures, while the radiators compensate for peak
loads. After reaching the minimum comfort temperature in the morning and for most of the occupancy
period (8 a.m.-5 p.m.), the heating systems are generally not activated. For the ambient temperatures
during the controlled period, the daily heat gains (especially solar irradiance) are sufficient to keep the room
temperature above its minimum bound during the day.

The three separately controlled Venetian blinds attempt to predictively keep the room temperature near
the upper comfort bound while harvesting a maximum of the solar heat gains and daylight to reduce energy
consumption for heating and lighting. Shading is operated on October 26, 27, 28 and 30 as well as November
2, 5, 10 and 11. The north-west facade is generally shaded to a lower extent compared to the south-east
and south-west facades, since the sun is only shining on this facade during the afternoon (observable in
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the ”Solar azimuth” subplot). Hence, this window facade can be used to transmit daylight, while, on days
with high direct solar irradiance, mainly the two south-oriented facades are shaded to a higher extent. On
some days with shading, there is a slight exceedance of the upper comfort bound (e.g., on October 26,
28 and 30 and November 10), but, in general, the shading control shows a satisfactory performance. On
November 2, the forecasted direct normal irradiance is underestimated due to a maximum threshold for the
solar zenith angle in the DIRINT model (equivalent to the neglect of any direct irradiance, where the solar
zenith angle is above this threshold), which was set too low with a value of 65°. The underestimation of
the direct normal irradiance on this day is also detectable in Figure This leads to the calculation of
a very low amount of direct normal irradiance on days with a small solar elevation. After this day, the
parameter was corrected to a value of 80°. Generally, the shading control tries to avoid an oscillatory, user-
disturbing operation (according to Equation ; especially weighted for the vertical shading position due
to the higher disturbance potential compared to the inclination angle) and smoothly increases or decreases
the shading position for most days. The apparent oscillations for the inclination angle (frequent switching
to an inclination angle of 0°) can be explained by the motion sequence that is performed if the vertical
shading position is changed. For changing the shading position, the blinds have to switch to an inclination
angle of 0°, move to the new vertical shading position set-point and restore the old inclination angle. The
blinds are raised on days during which there is no risk to exceed the upper comfort bound to maximize the
transmission of solar heat gains and daylight. The ”Illuminance” subplot exhibits that during most of the
controlled period in the daytime (also during times without occupancy and artificial lighting), the minimum
illuminance of 500 Lux is fulfilled.

On November 1, the shading could not be controlled by the MPC due to too high wind speeds, which
resulted in an automatic raise of all blinds (indicated in the ”Wind alarm” subplot). On this day with high
direct irradiance, the upper comfort bound is significantly exceeded (by more than 2 °C), which highlights
the relevance of (predictive) shading control for preventing overheating. Moreover, the time delay between
the peaks of the solar radiation (around 12 p.m.) and the room temperature (around 3 p.m.) is shown,
which is attributed to the solar heating of the room surfaces, which heat up the room air temporally delayed.

On October 29, the MQTT broker crashed, which caused a communication loss from approximately
9 a.m. to 6 p.m. The shown results are interpolated between these times (straight lines visible in the ”Room
temperature” and ” Ambient temperatures” subplots).

In Figure the forecasted and measured disturbance quantities for the ambient temperature and the
solar irradiance quantities (global horizontal, direct normal and diffuse horizontal) are compared. The fore-
casted disturbance data are used in the optimization and are logged from October 24 on. The measurements
are based on the sensors of the local weather station on the roof of the building. It should be noted that
the "measured” trajectories for the irradiance quantities are calculated based on the external illuminance
measurements as described in the previous sections. The first subplot depicts the measured and forecasted
ambient temperature. In general, the trend and dynamics of the forecasted ambient temperature are in
agreement with the measured trajectory. However, peaks (both negative and positive) are often underes-
timated (for positive peaks on e.g., October 26, 28, 30 and November 6, 8 and 10; for negative peaks on
November 4, 5, 6, 8, 9 and 11). The forecast errors range up to 2 °C for the negative peaks and complicate
the predictive preheating to reach the minimum comfort bound at the beginning of the occupancy (8 a.m.).
The RMSE between the measured and forecasted ambient temperature is 1.31 K.

The second subplot reveals the measured and forecasted trajectories for the global horizontal irradiance.
The trajectories show a good agreement throughout the control horizon with an RMSE of 48.2 W/m? (on
October 29, the MQTT communication loss is visible). In the third subplot, the trajectories for the direct
normal irradiance are shown, which exhibit larger deviations. This can be partly traced back to the threshold
for the maximum zenith angle, which was set too low in the DIRINT model until November 2 (especially
evident on November 1 and 2). These forecast errors also manifest themselves in the last subplot of the
diffuse horizontal irradiance, where the forecast accuracy is significantly increased after this day. After
November 2, on some days, the direct normal irradiance is forecasted well (November 8, 9 and 10), on other
days it is overestimated (November 5 and 11) or underestimated (November 6). The RMSE between the
forecasted and measured trajectories is 126.6 W/m? for the direct normal and 48.9 W/m? for the diffuse
horizontal irradiance.
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Figure 12: Comparison of forecasted and measured disturbances
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The total discomfort averaged over the entire MPC execution period (adjusted for November 1, where
shading operation was not possible) is 0.53 Kh/d. This reveals that there is still room for improvement if the
full focus should be put on discomfort minimization. The specification of the different weighting factors of
the cost function terms (energy efficiency, discomfort minimization, daylight transmission and penalization
of shading oscillation) should be evaluated carefully and adjusted to occupancy preferences. Against the
background that the room control is very sensitive to the direct normal irradiance due to its large window
facades, the forecast accuracy of this irradiance quantity and potential improvements (e.g. the use of the
forecasted cloud cover to refine the forecast) should be investigated further. In analogy with the described
occupancy correction step, the irradiance (and ambient temperature) forecasts for the next sampling period
could be corrected or adjusted based on current measurements.

5.3. RBC

To place the control performance of the MPC and allow further conclusions on its control quality, a
conventional reference control in the form of a combined RBC+PI-control was run over a similar period of an
equal horizon of 21 days. The reference control was executed from April 3 to April 24, 2023, which constitutes
a period with similar disturbance quantities of ambient temperature, solar radiation and occupancy level.
The control performance and disturbance quantities are exhibited in Figure [[3] Compared to the ambient
temperatures during the MPC execution, the ambient temperatures are lower (average ambient temperature
during MPC: 14.2 °C; during RBC: 9.7 °C). As described for the conventional control mode, the valve
openings of the floor heating and radiators are controlled by the locally implemented, conventional PI-
controllers that track a room temperature set-point of 21 °C, which is sent by the cloud and equivalent
to the lower MPC bound during the occupied periods. The Venetian blinds are operated in a rule-based
manner based on a script running in the cloud, which is meant to mimic a conventional shading control.
Shading is operated, if the room is not occupied, based on an external illuminance sensor mounted on the
roof of the building. If the illuminance measurement exceeds a threshold of 50 klx, the blinds of the current
irradiated facade are lowered and inclined to an intermediate inclination angle of 60°.

In general, the conventional control demonstrates good control quality by preserving thermal comfort
for most of the time horizon. This results in a total averaged discomfort of 0.47 Kh/d, which is adjusted for
periods with wind alarm or occupancy, since during these times, the shading was not operated. On April
22, there was a failure in the MQTT communication, which is why this day is not accounted for in the
discomfort calculation. The overall discomfort level is similar to the one in the MPC. The last two subplots
reveal a rather inert configuration of the PI-controllers tracking the room temperature. The valve openings
are opened if the room temperature falls below 21 °C, but the openings are increased very slowly. Thereby,
during nights and also at several beginnings of the occupancy periods at 8 a.m., the room temperature
falls below 21 °C leading to some discomfort (e.g., on April 12, 16, 19 and 20). Nevertheless, the nightly
decrease of the temperatures is not as large as in the MPC. Operating the heating actuators already during
the evening (e.g., on April 6), when the potential occupants enter the room 14 hours later, suggests a rather
energy-inefficient behavior. Due to their inert configuration, the PI-controllers keep the valve openings open
from falling below 21 °C till reaching a temperature of approximately 21.5 °C (e.g., visible on April 7),
which equally constitutes energy-inefficient control. The floor heating and radiators are activated at the
same time but the valve opening of the radiators is increased to a higher extent. A distribution of the heat
load into a base and peak load is not visible, e.g. by activating the floor heating earlier and for a longer time
compared to the radiators, which would also exploit the higher energy efficiency of the floor heating due to
lower supply temperatures. The control performance of the shading demonstrates good results for most of
the time horizon. The upper comfort bound is exceeded on some days (April 5, 9, 14 and 21). On some days
(April 12, 18, 19, 20 and 23), the shading is operated without fully exploiting the upper comfort bound and
thereby, increases the demand for heating and lighting energy. This diverging shading behavior is expected
to arise more often for varying ambient temperatures, as, depending on the thermal transfer between the
room and the environment (as well as internal heat gains), the shading would be operated exceeding the
upper comfort bound (on warmer days) or without exploiting the upper comfort bound (on colder days).
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6. Conclusion and outlook

This work presents a field demonstration of a nonlinear, Modelica-based MPC applied to an HVAC system
of an office space. The implemented MPC toolchain comprises state estimation, a forecasting module (for
occupancy, supply temperatures and weather including calculation of direct and diffuse solar irradiance),
parameter estimation and MQTT communication to actuators and sensors.

A nonlinear, iterative parameter estimation is performed before and during the MPC execution to cal-
ibrate selected parameters of the physics-based building model. The calibration is divided into separate
periods that isolate the different heating flows influencing the room temperature (e.g., focus on the building
envelope, shading or the heating actuators). The final calibrated model demonstrates a good high model
accuracy and suitability for building MPC use with an RMSE between the measured and estimated room
temperature of 0.49 K (averaged over all considered calibration periods from September 17 to November 4,
2022).

The experimental MPC was run for 21 days from October 21 to November 11, 2022 and included
both operation of heating (manipulating the valve openings of radiators and floor heating) and shading
(manipulating the shading position and inclination angle of three Venetian blinds). The MPC algorithm
takes into consideration energy consumption for heating and lighting, thermal discomfort and potential
shading disturbance to the occupants. The field test results manifest the capability of the MPC to maintain
the room temperature largely within the comfort bounds. The heating and shading systems are controlled
in an anticipatory manner to preserve thermal comfort while at the same time exploiting the widened
comfort range during unoccupied periods. A room-individual energy consumption metering is currently not
implemented, which would allow quantified conclusions with regard to the energy efficiency of the MPC in
comparison to a conventional control. Nevertheless, the results demonstrate a heating control that operates
the room temperature in an energy-efficient manner near the lower temperature bounds, exploits the higher
energy efficiency of the floor heating and heats the actuators according to their dynamics to provide thermal
comfort at the beginning of the occupancy periods. The shading control aims to exploit a maximum of the
solar heat gains and daylight to minimize energy consumption for heating and lighting while considering
the upper comfort bound, the different orientations of the window facades and potential disturbance to
the occupants. Comparing the forecasted and measured disturbance quantities, sufficient forecast accuracy
is revealed for all quantities with a potential for improvement for ambient temperature and direct normal
irradiance. A comparison with a conventional control approach reveals the energy saving potentials of the
MPC. The MPC operation results in a thermal discomfort of 0.53 Kh/d (averaged over the MPC execution
period), which still gives room to general refinements or readjustments of the weighting factors in the cost
function.

In future works, developed distributed [34], hierarchical [33] or hybrid [35] MPC approaches should be
tested in field tests on the controlled room or larger buildings including integer decision variables. Air quality
(e.g., in the form of CO2) could be integrated as a comfort parameter based on the control of AHU models
and components of the energy storage and supply (e.g., heat pumps) should be included in the control
domain. The controlled room should be equipped with room-individual energy consumption metering to
allow evaluation of the energy efficiency of MPC compared to a conventional PI control/RBC. Apart from
the controlled heating water mass flows, supply temperatures should be added as control inputs providing
more degrees of freedom within the optimization problem. The proposed control approach should be tested
during different seasons and for more regular occupancy and user interactions integrating the user inputs
into the MPC.

Author contributions

Maximilian Mork: Conceptualization, Methodology, Software, Investigation, Writing - Original draft,
Writing - Review & Editing, Visualization. Florian Redder: Software, Resources, Data curation, Writing
- Review & Editing, Visualization. André Xhonneux: Supervision, Writing - review & editing, Project
administration, Funding acquisition, Resources. Dirk Miiller: Supervision, Writing - review & editing,
Project administration, Funding acquisition, Resources.

23



Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that

could have appeared to influence the work reported in this paper.

Acknowledgments

The authors would like to thank their colleagues from the technical operations department for their

support and feedback, in particular, Sebastian Neitzel and Andre Kleinen. Funding: This work was sup-
ported by the BMWK (Federal Ministry for Economic Affairs and Climate Action), promotional reference
03EGBO0010A.

References

(1

2]
(3]
(4]

(5]

(6]
(7]
(8]
(9]
[10]
(11]
(12]
13]
(14]
[15]

[16]

(17)
(18]

(19]

20]
(21]

(22]

United Nations Environment Programme, 2021 Global Status Report for Buildings and Construction: Towards a
Zero-emission, Efficient and Resilient Buildings and Construction Sector, 2021. URL: https://globalabc.org/resources/
publications/2021-global-status-report-buildings-and-construction.

International Energy Agency, Building Energy Performance Metrics- Supporting Energy Efficiency Progress in Major
Economies, 2015. URL: https://www.iea.org/reports/building-energy-performance-metrics,

A. Afram, F. Janabi-Sharifi, Theory and applications of HVAC control systems - A review of model predictive control
(MPC), Build. Environ. 72 (2014) 343-355. doii10.1016/j.buildenv.2013.11.016,

P. Hoppe, Different aspects of assessing indoor and outdoor thermal comfort, Energy Build. 34 (2002) 661-665. doi:10.
1016/S0378-7788(02) 00017-8.

G. Serale, M. Fiorentini, A. Capozzoli, D. Bernardini, A. Bemporad, Model Predictive Control (MPC) for enhancing
building and HVAC system energy efficiency: Problem formulation, applications and opportunities, Energies 11 (2018).
d0i110.3390/en11030631.

T. Hilliard, M. Kavgic, L. Swan, Model predictive control for commercial buildings: trends and opportunities, Adv. Build.
Energy Res. 10 (2016) 172-190. doii10.1080/17512549.2015. 1079240

M. Kavgic, T. Hilliard, L. Swan, Opportunities for implementation of MPC in commercial buildings, Energy Procedia 78
(2015) 2148-2153. doi{10.1016/].egypro.2015.11.300l

J. Cigler, D. Gyalistras, J. Siroky, V.-N. Tiet, L. Ferkl, Beyond Theory: the Challenge of Implementing Model Predictive
Control in Buildings, in: 11th REHVA world Congr. 8th Int. Conf. Energy Effic. Smart Heal. Build., 2013, pp. 1008-1018.
Y. Ma, A. Kelman, A. Daly, F. Borrelli, Predictive control for energy efficient buildings with thermal storage: Modeling,
stimulation, and experiments, IEEE Control Syst. 32 (2012) 44-64. doi:10.1109/MCS.2011.2172532,

S. C. Bengea, A. D. Kelman, F. Borrelli, R. Taylor, S. Narayanan, Implementation of model predictive control for an
HVAC system in a mid-size commercial building, HVAC R Res. 20 (2014) 121-135. doi:10.1080/10789669.2013.834781
7. Véna, J. Cigler, J. Siroky, E. Zacekové, L. Ferkl, Model-based energy efficient control applied to an office building, J.
Process Control 24 (2014) 790-797. doi:10.1016/j.jprocont.2014.01.016.

S. R. West, J. K. Ward, J. Wall, Trial results from a model predictive control and optimisation system for commercial
building HVAC, Energy Build. 72 (2014) 271-279. do0ii10.1016/j.enbuild.2013.12.037.

R. De Coninck, L. Helsen, Practical implementation and evaluation of model predictive control for an office building in
Brussels, Energy Build. 111 (2016) 290-298. doi{10.1016/j.enbuild.2015.11.014.

X. Pang, C. Duarte, P. Haves, F. Chuang, Testing and demonstration of model predictive control applied to a radiant
slab cooling system in a building test facility, Energy Build. 172 (2018) 432-441. doi{10.1016/j.enbuild.2018.05.013/
R. Carli, G. Cavone, S. Ben Othman, M. Dotoli, IoT Based Architecture for Model Predictive Control of HVAC Systems
in Smart Buildings, Sensors 20 (2020) 781. doi:10.3390/s20030781.

S. Yang, M. P. Wan, B. F. Ng, S. Dubey, G. P. Henze, W. Chen, K. Baskaran, Model predictive control for integrated
control of air-conditioning and mechanical ventilation, lighting and shading systems, Appl. Energy 297 (2021) 117112.
doii10.1016/j.apenergy.2021.117112.

J. Drgona, D. Picard, L. Helsen, Cloud-based implementation of white-box model predictive control for a GEOTABS
office building: A field test demonstration, J. Process Control 88 (2020) 63-77. doii10.1016/j. jprocont.2020.02.007.
S. Freund, G. Schmitz, Implementation of model predictive control in a large-sized, low-energy office building, Build.
Environ. 197 (2021) 107830. doi{10.1016/j.buildenv.2021.107830.

D. Blum, Z. Wang, C. Weyandt, D. Kim, M. Wetter, T. Hong, M. A. Piette, Field demonstration and implementation
analysis of model predictive control in an office HVAC system, Appl. Energy 318 (2022) 119104. doii10.1016/j.apenergy.
2022.119104.

B. Merema, D. Saelens, H. Breesch, Demonstration of an MPC framework for all-air systems in non-residential buildings,
Build. Environ. 217 (2022) 109053. doi:10.1016/j.buildenv.2022.109053|

D. Sturzenegger, D. Gyalistras, V. Semeraro, M. Morari, R. S. Smith, BRCM Matlab Toolbox: Model generation for model
predictive building control, in: 2014 Am. Control Conf., IEEE, 2014, pp. 1063-1069. doi:10.1109/ACC.2014.6858967.

S. E. Mattsson, H. Elmqvist, Modelica - An International Effort to Design the Next Generation Modeling Language,
IFAC Proc. Vol. 30 (1997) 151-155. doii10.1016/s1474-6670(17)43628-7.

24


https://globalabc.org/resources/publications/2021-global-status-report-buildings-and-construction
https://globalabc.org/resources/publications/2021-global-status-report-buildings-and-construction
https://www.iea.org/reports/building-energy-performance-metrics
http://dx.doi.org/10.1016/j.buildenv.2013.11.016
http://dx.doi.org/10.1016/S0378-7788(02)00017-8
http://dx.doi.org/10.1016/S0378-7788(02)00017-8
http://dx.doi.org/10.3390/en11030631
http://dx.doi.org/10.1080/17512549.2015.1079240
http://dx.doi.org/10.1016/j.egypro.2015.11.300
http://dx.doi.org/10.1109/MCS.2011.2172532
http://dx.doi.org/10.1080/10789669.2013.834781
http://dx.doi.org/10.1016/j.jprocont.2014.01.016
http://dx.doi.org/10.1016/j.enbuild.2013.12.037
http://dx.doi.org/10.1016/j.enbuild.2015.11.014
http://dx.doi.org/10.1016/j.enbuild.2018.05.013
http://dx.doi.org/10.3390/s20030781
http://dx.doi.org/10.1016/j.apenergy.2021.117112
http://dx.doi.org/10.1016/j.jprocont.2020.02.007
http://dx.doi.org/10.1016/j.buildenv.2021.107830
http://dx.doi.org/10.1016/j.apenergy.2022.119104
http://dx.doi.org/10.1016/j.apenergy.2022.119104
http://dx.doi.org/10.1016/j.buildenv.2022.109053
http://dx.doi.org/10.1109/ACC.2014.6858967
http://dx.doi.org/10.1016/s1474-6670(17)43628-7

23]

24]

[25]
[26]

27]

(28]

29]
(30]
(31]
(32]
(33]
34]
(35]

(36]

37]

(38]

(39]

[40]
[41]

[42]
[43]

[44]
[45]
[46]

[47)

M. Wetter, C. Van Treeck, New Generation Computational Tools for Building and Community Energy Systems Annex 60
Final Report, 2017. URL: http://www.iea-annex60.org/downloads/iea-ebc-annex60-final-report.pdf.

D. Miiller, M. Lauster, A. Constantin, M. Fuchs, P. Remmen, Aixlib - an Open-Source Modelica Library Within the
IEA-EBC Annex 60 Framework, in: Proc. CESBP Cent. Eur. Symp. Build. Phys. BauSIM 2016, Dresden, Germany,
2016, pp. 3-9.

M. Wetter, W. Zuo, T. S. Nouidui, X. Pang, Modelica Buildings library, J. Build. Perform. Simul. 7 (2014) 253-270.
d0i:10.1080/19401493.2013.765506.

F. Jorissen, G. Reynders, R. Baetens, D. Picard, D. Saelens, L. Helsen, Implementation and verification of the IDEAS
building energy simulation library, J. Build. Perform. Simul. 11 (2018) 669-688. doi:10.1080/19401493.2018.1428361,
C. Nytsch-Geusen, C. Banhardt, A. Inderfurth, K. Mucha, J. Méckel, J. Radler, M. Thorade, C. R. Tugores, Buildingsys-
tems - Eine modular hierarchische Modell-Bibliothek zur energetischen Gebdude und Anlagensimulation, in: CESBP
Cent. Eur. Symp. Build. Phys. / BauSIM 2016, Dresden, Germany, 2016, pp. 473-480.

J. Akesson, K. E. Arzén, M. Géfvert, T. Bergdahl, H. Tummescheit, Modeling and optimization with Optimica and
JModelica.org-Languages and tools for solving large-scale dynamic optimization problems, Comput. Chem. Eng. 34
(2010) 1737-1749. doi:10.1016/j.compchemeng.2009.11.011}

J. Drgona, L. Helsen, Different Problem Classes and Solution Techniques for Model Predictive Building Control, in: Proc.
REHVA Annu. Meet. Conf. Low Carbon Technol. HVAC, Brussels, Belgium, 2018.

J. Drgona, J. Arroyo, 1. Cupeiro Figueroa, D. Blum, K. Arendt, D. Kim, E. P. Oll¢, J. Oravec, M. Wetter, D. L. Vrabie,
L. Helsen, All you need to know about model predictive control for buildings, Annu. Rev. Control 50 (2020) 190-232.
doi;10.1016/j.arcontrol.2020.09.001.

HSL. A collection of Fortran codes for large scale scientific computation., 2013. URL: http://www.hsl.rl.ac.uk/|

A. Wichter, L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear
programming, Math. Program. 106 (2006) 25-57. doi:10.1007/s10107-004-0559-y.

M. Mork, A. Xhonneux, D. Miiller, Nonlinear Distributed Model Predictive Control for multi-zone building energy systems,
Energy Build. 264 (2022) 112066. doi{10.1016/j.enbuild.2022.112066.

M. Mork, A. Xhonneux, D. Miiller, Hierarchical Model Predictive Control for complex building energy systems, Bauphysik
42 (2020) 306-314. doii10.1002/bapi.202000031.

M. Mork, N. Materzok, A. Xhonneux, D. Miiller, Nonlinear Hybrid Model Predictive Control for building energy systems,
Energy Build. 270 (2022) 112298. doii10.1016/j.enbuild.2022.112298|

F. Redder, P. Althaus, L. Westphal, T. Storek, E. Ubachukwu, S. Johnen, M. Oden, A. Xhonneux, D. Miiller, IoT
Architecture for Monitoring and Control of Sector-coupled Energy Systems in a Real-life Laboratory: Conceptualization,
Implementation and Evalution (Manuscript in Preparation) (2022).

P. Althaus, F. Redder, E. Ubachukwu, M. Mork, A. Xhonneux, D. Miiller, Enhancing Building Monitoring and Control
for District Energy Systems: Technology Selection and Installation within the Living Lab Energy Campus, Appl. Sci. 12
(2022). doi:10.3390/app12073305,

W. F. Holmgren, C. W. Hansen, M. A. Mikofski, pvlib python: a python package for modeling solar energy systems, J.
Open Source Softw. 3 (2018) 884. doi:10.21105/joss.00884.

S. Dervishi, A. Mahdavi, Computing diffuse fraction of global horizontal solar radiation: A model comparison, Sol.
Energy 86 (2012) 1796-1802. URL: https://linkinghub.elsevier.com/retrieve/pii/S0038092X12001132, doii10.1016/
j-solener.2012.03.008.

E. L. Maxwell, A quasi-physical model for converting hourly Global Horizontal to Direct Normal Insolation, SERI/TR-
215-3087, Solar Energy Research Institute, 1987.

D. Erbs, S. Klein, J. Duffie, Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global
radiation, Sol. Energy 28 (1982) 293-302. doi{10.1016/0038-092X (82)90302-4,

D. T. Reindl, W. A. Beckman, J. A. Duffie, Diffuse fraction correlations, Sol. Energy 45 (1990) 1-7.

J. Orgill, K. Hollands, Correlation equation for hourly diffuse radiation on a horizontal surface, Sol. Energy 19 (1977)
357-359. doii10.1016/0038-092X (77)90006-8.

R. R. Perez, P. Ineichen, E. L. Maxwell, R. D. Seals, A. Zelenka, Dynamic global-to-direct irradiance conversion models,
ASHRAE Trans. 98 (1992) 354-369.

F. Sun, G. Li, J. Wang, Unscented Kalman Filter Using Augmented State in the Presence of Additive Noise, in: 2009
IITA Int. Conf. Control. Autom. Syst. Eng. (case 2009), 3, IEEE, 2009, pp. 379-382. doi:10.1109/CASE.2009.51,

E. Wan, R. Van Der Merwe, The unscented Kalman filter for nonlinear estimation, in: Proc. IEEE 2000 Adapt. Syst.
Signal Process. Commun. Control Symp. (Cat. No.0OEX373), IEEE, 2000, pp. 153-158. doi{10.1109/ASSPCC.2000.882463.
DIN EN 12464-1. Light and lighting - Lighting of work places - Part 1: Indoor work places. German institute for stan-
dardization., 2011.

25


http://www.iea-annex60.org/downloads/iea-ebc-annex60-final-report.pdf
http://dx.doi.org/10.1080/19401493.2013.765506
http://dx.doi.org/10.1080/19401493.2018.1428361
http://dx.doi.org/10.1016/j.compchemeng.2009.11.011
http://dx.doi.org/10.1016/j.arcontrol.2020.09.001
http://www.hsl.rl.ac.uk/
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1016/j.enbuild.2022.112066
http://dx.doi.org/10.1002/bapi.202000031
http://dx.doi.org/10.1016/j.enbuild.2022.112298
http://dx.doi.org/10.3390/app12073305
http://dx.doi.org/10.21105/joss.00884
https://linkinghub.elsevier.com/retrieve/pii/S0038092X12001132
http://dx.doi.org/10.1016/j.solener.2012.03.008
http://dx.doi.org/10.1016/j.solener.2012.03.008
http://dx.doi.org/10.1016/0038-092X(82)90302-4
http://dx.doi.org/10.1016/0038-092X(77)90006-8
http://dx.doi.org/10.1109/CASE.2009.51
http://dx.doi.org/10.1109/ASSPCC.2000.882463

	Introduction
	Background
	Contribution

	Case study building
	Methodology
	MPC formulation
	Results
	Parameter estimation
	MPC
	RBC

	Conclusion and outlook

